Online linear optimization and adaptive routing

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online linear optimization and adaptive routing

This paper studies an online linear optimization problem generalizing the multi-armed bandit problem. Motivated primarily by the task of designing adaptive routing algorithms for overlay networks, we present two randomized online algorithms for selecting a sequence of routing paths in a network with unknown edge delays varying adversarially over time. In contrast with earlier work on this probl...

متن کامل

Online Optimization in Routing and Scheduling

In this thesis we study online optimization problems in routing and scheduling. An online problem is one where the problem instance is revealed incrementally. Decisions can (and sometimes must) be made before all information is available. We design and analyze (polynomial-time) online algorithms for a variety of problems. We utilize worst-case competitive ratio (and relaxations thereof), asympt...

متن کامل

Adaptive Bound Optimization for Online Convex Optimization

We introduce a new online convex optimization algorithm that adaptively chooses its regularization function based on the loss functions observed so far. This is in contrast to previous algorithms that use a fixed regularization function such as L2-squared, and modify it only via a single time-dependent parameter. Our algorithm’s regret bounds are worst-case optimal, and for certain realistic cl...

متن کامل

Online Linear Optimization via Smoothing

We present a new optimization-theoretic approach to analyzing Follow-the-Leader style algorithms, particularly in the setting where perturbations are used as a tool for regularization. We show that adding a strongly convex penalty function to the decision rule and adding stochastic perturbations to data correspond to deterministic and stochastic smoothing operations, respectively. We establish ...

متن کامل

Online Linear Optimization with Sparsity

Now, let us consider the case ofK = Kb with b ∈ (1,∞). For v ∈ R andQ ⊆ [d], let vQ denote the 6 projection of v to those dimensions inQ. Then for any v ∈ R, and any w ∈ Kb withQ = {i : wi 6= 7 0}, we know by Hölder’s inequality that 〈w,v〉 = 〈wQ,vQ〉 ≥ −‖w‖b · ‖vQ‖a , for a = b/(b− 1). 8 Moreover, one can have 〈wQ,vQ〉 = −‖w‖b · ‖vQ‖a , when |wi| /‖w‖b = |vi|/‖v‖a and 9 wivi ≤ 0 for every i ∈ Q. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer and System Sciences

سال: 2008

ISSN: 0022-0000

DOI: 10.1016/j.jcss.2007.04.016